Volume 21, Issue 1, August 2017, Pages 96–102
A.-Roger LULA BABOLE1 and Yves MANGONGO TINDA2
1 Département de Mathématiques et Informatique, Université de Kinshasa, RD Congo
2 Département des Mathématiques et Informatique, Université de Kinshasa, RD Congo
Original language: French
Copyright © 2017 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
By applying the formal arithmetic model, the mathematic and logic theories have created the self-references and have chosen a specific model for accomplish the logic-mathematics proves. A formal arithmetic (ROBINSON et PEANO) constitute in this fact the basic hypothesis for the two incompleteness theorems.
Author Keywords: formal arithmetic, incompleteness, decidability, axiomatic, coherence.
A.-Roger LULA BABOLE1 and Yves MANGONGO TINDA2
1 Département de Mathématiques et Informatique, Université de Kinshasa, RD Congo
2 Département des Mathématiques et Informatique, Université de Kinshasa, RD Congo
Original language: French
Copyright © 2017 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
By applying the formal arithmetic model, the mathematic and logic theories have created the self-references and have chosen a specific model for accomplish the logic-mathematics proves. A formal arithmetic (ROBINSON et PEANO) constitute in this fact the basic hypothesis for the two incompleteness theorems.
Author Keywords: formal arithmetic, incompleteness, decidability, axiomatic, coherence.
Abstract: (french)
En appliquant le modèle de l’arithmétique formelle, les théories mathématiques et logiques ont créé les autoréférences et ont choisi un modèle spécifique pour faire assoir les preuves logico-mathématiques. L’arithmétique formelle (ROBINSON et PEANO) constitue, à cet effet, les hypothèses de base de deux théorèmes d’incomplétude.
Author Keywords: Arithmétique formelle, incomplétude, décision, axiomatique, cohérence.
How to Cite this Article
A.-Roger LULA BABOLE and Yves MANGONGO TINDA, “L’arithmétique formelle et l’incomplétude,” International Journal of Innovation and Applied Studies, vol. 21, no. 1, pp. 96–102, August 2017.