Volume 21, Issue 2, September 2017, Pages 260–266
Apollinaire RUHANAMIRINDI NGOMBWA1
1 Junior lecture at Teachers’ Training College of Walungu, South Kivu, Province, RD Congo
Original language: French
Copyright © 2017 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The matrix calculation is taking presently more and more a great place in teaching as well as in research. The matrix properties are treated basically, the statement leads the reading progressively, from definition to different matrix types as well as to linear equation systems, to proper value problems and to differential equation systems resolution. The matrix calculation interests many mathematicians, Physicists, economists and so on. This work is aiming at studying squared matrix proper values determination, its inverse with Leverrier’s algorithm, obliges determinant notions Knowledge beforehand.
Author Keywords: Matrix calculation, Proper values , Leverrier’s algorithm.
Apollinaire RUHANAMIRINDI NGOMBWA1
1 Junior lecture at Teachers’ Training College of Walungu, South Kivu, Province, RD Congo
Original language: French
Copyright © 2017 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The matrix calculation is taking presently more and more a great place in teaching as well as in research. The matrix properties are treated basically, the statement leads the reading progressively, from definition to different matrix types as well as to linear equation systems, to proper value problems and to differential equation systems resolution. The matrix calculation interests many mathematicians, Physicists, economists and so on. This work is aiming at studying squared matrix proper values determination, its inverse with Leverrier’s algorithm, obliges determinant notions Knowledge beforehand.
Author Keywords: Matrix calculation, Proper values , Leverrier’s algorithm.
Abstract: (french)
Le calcul matriciel prend actuellement une place de plus en plus grande dans l’enseignement comme dans la recherche. Les propriétés des matrices sont traitées d’un point de vue élémentaire, l’exposé conduit le lecteur progressivement, de la définition aux différents types des matrices ainsi qu’aux applications aux systèmes d’équations linéaires, aux problèmes des valeurs propres et à la résolution des systèmes d’équations différentielles. Le calcul matriciel intéresse pas mal d’étudiants mathématiciens, physiciens, économistes, etc. Ce travail qui se propose de faire une étude sur la détermination des valeurs propres d’une matrice carrée, son inverse par l’algorithme de Leverrier, exige au préalable une connaissance des déterminants.
Author Keywords: calcul matriciel, valeurs propres, l’algorithme de Leverrier.
How to Cite this Article
Apollinaire RUHANAMIRINDI NGOMBWA, “SUR LA DETERMINATION DES VALEURS PROPRES D’UNE MATRICE CARREE ET SON INVERSE PAR L’ALGORITHME DE LEVERRIER,” International Journal of Innovation and Applied Studies, vol. 21, no. 2, pp. 260–266, September 2017.