|
Twitter
|
Facebook
|
Google+
|
VKontakte
|
LinkedIn
|
Viadeo
|
English
|
Français
|
Español
|
العربية
|
 
International Journal of Innovation and Applied Studies
ISSN: 2028-9324     CODEN: IJIABO     OCLC Number: 828807274     ZDB-ID: 2703985-7
 
 
Saturday 23 November 2024

About IJIAS

News

Submission

Downloads

Archives

Custom Search

Contact

  • Contact us
  • Newsletter:

Connect with IJIAS

  Now IJIAS is indexed in EBSCO, ResearchGate, ProQuest, Chemical Abstracts Service, Index Copernicus, IET Inspec Direct, Ulrichs Web, Google Scholar, CAS Abstracts, J-Gate, UDL Library, CiteSeerX, WorldCat, Scirus, Research Bible and getCited, etc.  
 
 
 

THEOREME DE GODEL


Volume 21, Issue 4, November 2017, Pages 640–655

 THEOREME DE GODEL

A.-Roger LULA BABOLE1

1 Département de Mathématiques et Informatique, Université de Kinshasa, RD Congo

Original language: French

Copyright © 2017 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract


The GÖDEL’s theorem is intrinsically a theorem of limitation of the formals systems. The theorem shows that the coherence of PEANO’s arithmetic cannot be demonstrate by a simple way. This constitutes an opposite shock in metamathematic design in HILBERT’s perspective. Finally, if we want a proof of arithmetic coherence, it is sufficient to approve the arbitrary notions the type of function and function of function, and that next to concretes symbols.

Author Keywords: incompleteness, indecidability, demonstrability, truth, coherence.


Abstract: (french)


Le théorème de GÖDEL est intrinsèquement un théorème de limitation des systèmes formels. En tant que tel, il démontre que la cohérence de l’arithmétique de PEANO ne peut se montrer de façon élémentaire. Celui-ci constitue un contrecoup dans la métamathématique conçue dans la perspective hilbertienne : finitaire. Donc, si l’on veut une démonstration de la cohérence de l’arithmétique, il suffit d’admettre les notions abstraites du type de fonction et fonction de fonction, et cela à côté des symboles concrets.

Author Keywords: incomplétude, indécidabilité, démontrabilité, vérité, cohérence.


How to Cite this Article


A.-Roger LULA BABOLE, “THEOREME DE GODEL,” International Journal of Innovation and Applied Studies, vol. 21, no. 4, pp. 640–655, November 2017.