Assamala NOBA1, Akoua Philomène KOUASSI-YAO2, Zachée Louis Evariste AKISSI3, Sandrine COJEAN4, Soulaf SUYYAGH-ALBOUZ5, Sébastien Pomell6, Philippe M. LOISEAU7, Kouassi Pierre Alain KONAN8, Kouamé Jean Michel KOFFI9, Alexandre MACIUK10, Anoubile Benie11, and Yao Dénis N’DRI12
1 Laboratoire de Chimie BioOrganique et de Substances Naturelles, UFR Sciences Fondamentales et Appliquées, Université Nangui ABROGOUA, 02 BP 801, Abidjan, Côte d’Ivoire
2 Université de San Pedro, BP V1800 San Pedro, Côte d’Ivoire
3 BioEcoAgro Joint Cross-Border Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, 59650 Villeneuve d’Ascq, France
4 Equipe «Chimiothérapie antiparasitaire» BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
5 Equipe «Chimiothérapie antiparasitaire» BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
6 Equipe «Chimiothérapie antiparasitaire» BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
7 Equipe «Chimiothérapie antiparasitaire» BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
8 Laboratoire de Chimie BioOrganique et de Substances Naturelles, UFR Sciences Fondamentales et Appliquées, Université Nangui ABROGOUA, 02 BP 801, Abidjan, Côte d’Ivoire
9 Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix HOUPHOUËT-BOIGNY de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoire
10 Equipe «Chimie des substances naturelles» BioCis, Univ. Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
11 Laboratoire de chimie Bio Organique et de substances naturelles(LCBOSN), Unité de Formation et de Recherche Sciences Fondamentales et Appliquées (UFR SFA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
12 Laboratoire de Biochimie Alimentaire et de Technologies des Produits Tropicaux (LBATPT), UFR Sciences et Technologies des Aliments, Université Nangui ABROGOUA, 02 BP 801, Abidjan, Côte d’Ivoire
Original language: English
Copyright © 2024 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Salacia species are widely used in traditional medicine for the treatment of several pathologies such as diabetes, liver disorders and skin infections. In Africa, Salacia nitida is used for its beneficial effects against typhoid fever and malaria. However, despite the many traditional uses of this plant, few chemical studies have been carried out on this species. Our study aims to extract, isolate and identify phytocompounds from the leaves and root bark of S. nitida and evaluate their biological potential. Extraction by successive maceration followed by flash chromatography allowed the isolation of five compounds whose structures were elucidated by spectroscopic techniques (NMR and HRMS) and by comparison with literature data. These are two benzophenones, 4’-hydroxy-2,4,6-trimethoxybenzophenone (1) and 4’-hydroxy-2,4,6-trimethoxyphenone-β-D-glucopyranose (2), from leaves, and three xanthones, salacin A (3), salacin B (4) and mangiferin 5 from the root bark of Salacia nitida. Compounds 1 and 5 are already known in the literature. All crude extracts and compounds 1 and 2 were evaluated for their antitrypanosomal activity. Some extracts showed a significant effect on Trypanosoma brucei gambiense.
Author Keywords: Salacia nítida, phytocompounds, antiprotozoal, Trypanosoma brucei gambiense.