Volume 47, Issue 2, December 2025, Pages 250–255



DIONGA NDIBU Ornella1, LUBONGO MUEMBE Georgine2, Glory ALONDA MADOMBA3, Simplice EALE BOTULI4, and KABEYA TSHISEBA Cedric5
1 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
2 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
3 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
4 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
5 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
Original language: English
Copyright © 2025 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article focuses on the comparison of the temporal and spatial algorithmic complexities of iterative and recursive structures, through the analysis of classic cases (factorial, Fibonacci sequence, tree traversal). We demonstrate in this study that on the one hand iteration generally offers better memory efficiency (O (1) in many cases) and avoids the risks of stack overflow, and on the other hand that recursion, although more elegant and intuitive for certain problems (such as tree traversals), can generate a memory overload (O (n) in call stack) and degraded time complexity in non-optimized cases (eg: naive Fibonacci in O (2ⁿ)). The results obtained here highlight that the choice between these two approaches depends on the context the developer is in. It is therefore worth noting that iteration is better suited to linear and memory-constrained problems, and recursion to nested structures (trees, divide-and-conquer), especially if the language supports tail call optimization. This comparison provides objective criteria to guide developers in selecting the most effective approach based on needs.
Author Keywords: iteration, recursion, time complexity, space complexity, call stack, optimization.



DIONGA NDIBU Ornella1, LUBONGO MUEMBE Georgine2, Glory ALONDA MADOMBA3, Simplice EALE BOTULI4, and KABEYA TSHISEBA Cedric5
1 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
2 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
3 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
4 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
5 Département de Mathématique et Informatique, Faculté de Sciences, Université Pédagogique Nationale (UPN), Ngaliema, Kinshasa, RD Congo
Original language: English
Copyright © 2025 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
This article focuses on the comparison of the temporal and spatial algorithmic complexities of iterative and recursive structures, through the analysis of classic cases (factorial, Fibonacci sequence, tree traversal). We demonstrate in this study that on the one hand iteration generally offers better memory efficiency (O (1) in many cases) and avoids the risks of stack overflow, and on the other hand that recursion, although more elegant and intuitive for certain problems (such as tree traversals), can generate a memory overload (O (n) in call stack) and degraded time complexity in non-optimized cases (eg: naive Fibonacci in O (2ⁿ)). The results obtained here highlight that the choice between these two approaches depends on the context the developer is in. It is therefore worth noting that iteration is better suited to linear and memory-constrained problems, and recursion to nested structures (trees, divide-and-conquer), especially if the language supports tail call optimization. This comparison provides objective criteria to guide developers in selecting the most effective approach based on needs.
Author Keywords: iteration, recursion, time complexity, space complexity, call stack, optimization.
How to Cite this Article
DIONGA NDIBU Ornella, LUBONGO MUEMBE Georgine, Glory ALONDA MADOMBA, Simplice EALE BOTULI, and KABEYA TSHISEBA Cedric, “Comparative study of the temporal and special algorithmic complexity of iterative structures versus recursive structures,” International Journal of Innovation and Applied Studies, vol. 47, no. 2, pp. 250–255, December 2025.