This work investigated, using a 3-D modelling, the influence of electrons losses on the performance of a polycrystalline silicon PV cell.
The electrons transport equations have been solved by taking into account the rate of electrons lost at the junction (Sf0) to find the expression of the electrons’ density which allowed to derive the expressions of the electrical parameters (Jph, Vph, P) then those of the performance parameters (η, Rsh) of the PV cell grain. Then we analyzed, from a numerical simulation, the effects of the rate of electrons lost at the junction (Sf0) on the performance parameters (η, Rsh) found from the curves of output power (PT) -diffusion velocity (Sfj).
Results of simulation showed that, in open circuit, there is a leakage current at the junction of the PV cell grain whose density increases from 0 mA.cm-2 à 58.80 mA.cm-2 resulting in a drastic drop in the shunt resistance from infinity to 4.273 Ω.cm 2 and a drop in the conversion efficiency of 34.376%. Considering the manufacturers’ standards, 20% drop in efficiency, so for Sf0 = 1,790×104 cm.s-1 the PV cell is degraded.